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Summary

Spacecraft designs are driven by the payloads and
mission requirements that they support. Many of the
payload characteristics, such as mass, power require-
ments, communication requirements, moving parts,
and so forth, directly affect the choices for the space-
craft structural configuration and its subsystem de-
sign and component selection. The conceptual de-
sign process, which translates mission requirements
into early spacecraft concepts, must be tolerant of
frequent changes in the payload complement and re-
source requirements.

A computer data base has been designed and
implemented for the purposes of (1) containing the
payload characteristics pertinent for spacecraft con-
ceptual design, (2) tracking the evolution of these
payloads over time, and (3) enabling the integra-
tion of the payload data with engineering analysis
programs for improving the efficiency in producing
spacecraft designs. In-house computer tools have
been used to integrate the subject data base with
an existing analysis program that optimizes selected
payload mass locations on any specified spacecraft
geometry.

Introduction

The National Aeronautics and Space Administra-
tion (NASA) is developing plans and conducting de-
sign studies for a complement of new spacecraft, both
near term (to the year 2000) and far term (post 2000),
that will carry numerous multidisciplinary science in-
struments. The focus of the NASA program in re-
mote sensing is primarily Earth system science and
the monitoring of Earth global changes (ref. 1). Cur-
rently, there are insufficient measurement techniques
and operational systems to collect the diverse, high-
resolution data needed to understand the complex in-
teractions among the surface, oceanic, atmospheric,
and biological elements of the planet. These data,
once obtainable, will be used to model and forecast
the courses of such major trends as global warming,
ozone depletion, and acid rain.

In order to identify the advanced technology needs
of one class of new Earth sciences spacecraft, the
Spacecraft Analysis Branch (SAB) of the NASA
Langley Research Center (LaRC) is conducting sys-
tem studies of second-generation platform concepts
for geostationary orbit (GEO). Such large space-
craft would serve as stable platforms for large op-
tical and antenna systems as well as numerous other
complementary scientific instruments. The platform
structural configuration and support subsystem de-
signs are highly dependent on the set of instruments

selected and the characteristics of each individual in-
strument such as the requirements for field of view,
pointing accuracy and stability, power, and data
communications. In addition, the mass, volume, and
potential interference of the instrument with other
sensors will affect both launch packaging and the lay-
out of the platform when once in operation. However,
since the instruments to be lown in most cases do not
yet exist (it is expected that several will be deriva-
tives of existing lower Earth orbit versions), the early
spacecraft design process must tolerate the evolution
of these instruments and the associated ill-defined re-
quirements placed on the spacecraft.

As a direct result of the need for managing the
descriptions of developing instrument technology, a
computer data base was designed and implemented
for the purposes of (1) providing a flexible means
of storing instrument attribute information, (2) pro-
viding a change history for these attributes as they
are updated over time, and (3) allowing traceabil-
ity between the engineering analysis results and the
associated instrument complement upon which they
were based. In addition to tracing requirements, the
data base can be used to automate the communi-
cation of instrument attributes to several computer-
aided design and engineering (CADE) programs used
by SAB. Thus, an electronic form of the data ex-
ists that reduces the errors common with repeated
human handling when information is exchanged in
hardcopy form only.

During the geostationary platform study (ref. 2),
a “straw-man” instrument list was selected and data
were stored in the data base for user access. The
intent of this report is to provide the background
and motivation for the data base development and
to describe the data base architecture and its initial
set of values. For completeness, additional sections
also provide a brief overview of the interactive data
base software used and describe an example of the
integration of the data base with an analysis code.

Instrument Attribute Definitions

The set of instrument attributes selected for this
data base were those characteristics having a major
impact on the design of the spacecraft subsystems
and configuration. Although other attributes could
be included, this set is adequate to describe typical
instrumentation proposed for spacecraft operating at
arbitrary Earth orbits.

The information contained in the data base (the
schema) for each instrument is described pictorially
in figure 1. The data base is broken down into



a set of nine tables (relations). Eight of the rela-
tions contain data specific to the instrument, and
one table contains information that relates specific
groups of instruments to particular spacecraft con-
cepts. Relation GEN_INFO contains the objec-
tive, contact person, and reference information of
the instrument. DIMEN, THERMAL, E_POWER,
DATA_COM, MV_PARTS, and POINTING con-
tain attributes that define the physical properties and
performance requirements of the instrument. Rela-
tion SPEC_CON is set aside for comments or con-
siderations not contained elsewhere in the data base.
Finally, the relation SPACECFT contains the names
of spacecraft concepts being analyzed and the space-
craft specific locations and orientations of the partic-
ular instrument set selected for that concept. Guide-
lines used during the development of the data base
are presented in the following sections.

Instrument Description Guidelines

Units are in the MKS (meter-kilogram-second)

system, but angles and angular rates are given in
the units common to the discipline (radians, degrees,
arcseconds, etc.).

Reference will be made to a sketch (or computer
solid model) of each instrument that defines a right-
hand coordinate system attached to and fixed in the
instrument. This coordinate system, assigned by the
instrument designer, fixes the origin for defining the
instrument center of mass, inertias, and orientation.
These values will be used to allow calculation of over-

all mass properties for any 7pairt1cular spacecraft to
which the instrument is attached. The axis con-
vention suggested is to align the +z-axis along the
primary viewing axis of the instrument. Figure 2
shows a Moderate Resolution Imaging Spectrome-
ter (MORIS) Wlth the suggested coordinate system
attached.

For each instrument, overall envelope dimensions
of length, width, and height (¢,w, and h) will be
given as increments along the instrument z-, y-, and
z-axes, respectively. These overall measurements

identify the volume of space needed by the instru-

ment itself including any additional clearances for in-

stallation and/or maintenance. The value provided -
for the attribute VOLUME in the relation DIMEN -

should be the actual volume of the instrument al-
though the product of £ x w x h will be used if no
more definitive information is available.

User review
or editing
Extemal
application
program
GEN_INFO DIMEN THERMAL _ data access
General Physical Thsel:tr:glsc;:g::rol
information description parameters
o
E.POWER DATA.COM MV_PARTS L]
Electrical Data ) ®
ower communications Moving parts
subsystem subsystem description
parameters parameters
POINTING SPEC.CON SPACECFT
Attitude Special
control consu%eraﬁons ,g,eesé%g
subsystem and information
parameters comments

Figure 1. Block diagram of instrument data base.
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Figure 2. Example of instrument coordinate system.

An integer value between 1 and 8 will be used to
signify the development status of a given instrument
in accordance with table 1. (See ref. 3.)

Thermal considerations can be described over
three operational modes: nominal, peak, and
standby. The heat dissipation for the instrument is
accommodated in the data base for all three modes,
as are the temperature ranges for the electronics
module and one antenna (if one exists). Also, any
assumptions made about the radiator field of view
(FOV) of the instrument (i.e., full hemisphere clear
view, radians clear view with no reflectance, etc.)
can be stated. This information is used to size
passive (radiators) or active thermal control options
and to determine their impact on the spacecraft
configuration.

Electrical power requirements of the instrument
are likewise given for these three operational modes.
This information, together with duty cycle, voltage
type, and range, will be used when determining the
spacecraft power source, storage, and distribution
methods.

Data for a maximum of two moving parts per in-
strument can be entered. If more than two moving
parts exist, the two with the largest impact on in-
strument performance should be selected. This in-
formation will be used primarily to define dynamic

disturbance functions for testing the spacecraft struc-
tural response.

Table 1. Definitions of Technology Readiness Levels

Readiness
level Definition

1 Basic principles observed and reported

2 Conceptual design formulated

3 Conceptual design tested analytically
or experimentally

4 Critical function/characteristics
demonstrated

5 Component /breadboard tested in
relevant environment

6 Prototype engineering model tested
in relevant environment

7 Engineering model tested in space

8 Full operational capability (incorporated
in production design)




Pointing contro! requirements will be given in
terms of short- and long-term pointing angles and
short- and long-term angular rates. Three fields of
view (instantaneous, maximum, and protected) are
specified.

The downlink requirements for data communi-

cations are also given over the same three opera-
tional modes as thermal and electrical power: nom-
inal, peak, and standby. Data rates and duty cycles
are given for both the science and housekeeping data
commuunications.

The electromagnetic interference (EMI) between
clements is assumed to be within the military stan-

Listing of Attributes by Relation
GEN_INFO:

dards of reference 4 (MIL-STD-461C). If this as-
sumption is false, a notation should be made in the
SPEC_CON relation.

The information just described has been grouped
into the set of relations shown in figure 1. The
attributes for each relation (including the variable
name, a brief definition, unit of measure, and the
FORTRAN data type) are given below, and example
values are given in the appendix. These descriptions
should be sufficient for a user of the data base to

“understand the intent of the data and to calculate or

esmmate needed 1nformat10n

INSTR_NO: Instrument identification number; integer
TITLE: Instrument name and abbreviation (if applicable); text

UPDATE: Date of latest update; text

CONTACT: Name, address, and phone number of the contact person for the mstrumen’c text

M_OBJ: Measurement objective; text

DESCRIPT: Brief description of sensing method; text

DEV_STAT: Development status between 1 and 8; integer

SKETCH: Reference to sketch of instrument; text

REFER: Reference information available on instrument (latest data); text

DIMEN:
INSTR_NO: See above.
TITLE: See above.

LENGTH: Overall instrument length, plus clearances, measured in instrument z-axis (typically

along flight path), m; real

WIDTH: Overall instrument width, plus clearances, measured in instrument y-axis (typically

perpendicular to orbit plane), m; real

HEIGHT: Overall instrument height, plus clearances, measured in instrument z-axis (typically

along nadir), m; real

VOLUME: Instrument volume; default to LENGTH x WIDTH x HEIGHT, m3; real

MASS: Instrument total mass, kg; real

LOCAL_CM: z, y, z location of instrument center of mass relative to instrument origin (if 0,0, 0,
then center of mass is equal to the coordinate system origin), m; real (3) -
INERTIA XX, YY, 22, XY, XZ, Y Z local moments of inertia relative to instrument axes,

kg-m?; real (6)

CENTER z, y, z displacement from instrument origin to center of operatxonal Volume defined
by LENGTH, WIDTH, and HEIGHT (if 0,0, 0, then center of volume is equal to the coordinate

system origin), m; real (3)

THERMAL: =
INSTR_NO: See above.
TITLE: See above.

RAD_ASMP: Radiator viewing design assumptions for this instrument; text
DIS_NOM: Nominal heat dissipation (rejection), min and max, W; real (2)
DIS_PEK: Peak heat dissipation, min and max, W; real (2)
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DIS_STB: Standby heat dissipation, min and max, W; real (2)

ETMP_NOM: Electronics nominal-operation temperature ranges, min and max, °C; real (2)
ETMP_PEK: Electronics peak-operation temperature ranges, min and max, °C; real (2)
ETMP_STB: Electronics standby-operation temperature ranges, min and max, °C; real (2)
ATMP_NOM: Antenna (if applicable) nominal-operation temperature ranges, min and max, °C,;
real (2)

ATMP_PEK: Antenna (if applicable) peak-operation temperature ranges, min and max, °C;
real (2)

ATMP_STB: Antenna (if applicable) standby-operation temperature ranges, min and max, °C;
real (2)

E_POWER:
INSTR_NO: See above.
TITLE: See above.
PWR_NOM: Instrument nominal-operation power, W; real
PWR_PEK: Instrument peak-operation power, W; real
PWR_STB: Instrument standby power, W; real
INP_VOLT: Instrument input voltage, V; real
VOLT_TYP: Input-voltage type (i.e., AC or DC); text (10)
REG: Power regulation, min and max, V; real (2)
DUTY_CYC : Instrument duty cycle, percent; real

DATA_COM:
INSTR_NO: See above.
TITLE: See above.
SDATA_R: Data rate necessary for science applications, kbps; real
HDATA_R: Data rate necessary for housekeeping operations, kbps; real
SDUTY_C: Duty cycle for science applications, percent; real
HDUTY_ C: Duty cycle for housekeeping operations, percent; real
UREQ_RAT: Uplink data requirement rate for nominal operation, kbps; real
UREQ_VOL: Uplink data requirement volume (number of commands) for nominal operation,
bits; real
DREQ_NOM: Downlink data requirements for nominal operation, analog and digital, kbps;
real (2)
DREQ_PEK: Downlink data requirements for peak operation, analog and digital, kbps; real (2)
DREQ_STB: Downlink data requirements for standby operation, analog and digital, kbps;
real (2)

MV_PARTS:
(NOTE: A maximum of two moving parts can be recorded. If more then two moving parts exist,
choose the two with the presumed largest effects on spacecraft performance.)
INSTR_NO: See above.
TITLE: See above.
MP1_COMP: Name or type of first moving component (i.e., antenna, mirror); text
MP1_MASS: Mass of first moving component, kg; real
MP1_MARM: Moment arm to center of mass of first moving component, m; real
MP1_MOI: Moments of inertia of first moving component: XX, YY, ZZ, XY, XZ, Y Z, respec-
tively, kg-m?; real (6)
MP1_LACC: Linear acceleration of first moving part in z, y, 2, respectively, m/sec; real (3)
MP1_AACC: Angular acceleration of first moving part about z, y, z, respectively, deg/sec;
real (3)



MP2_COMP: Name or type of second moving part; text

MP2_MASS: Mass of second moving part, kg; real

MP2_MARM: Moment arm to center of mass of second moving part, m; real

MP2_MOIL: Moments of inertia of second moving part: XX, YY, ZZ, XY, XZ, Y Z, respectively,
kg-m?; real (6)

MP2_LACC: Linear acceleration of second moving part in z, y, z, respectively, m/sec; real (3)
MP2_AACC: Angular acceleration of second moving part about z, y, z, respectively, deg/sec;

real (3)

POINTING:
INSTR_NO: See above.
TITLE: See above.
PT REQ_A: Instrument pointing control requirement angles, about x, y, z short term and
z, y, z long term, respectively, deg; real (6) :
PT_REQ_R: Instrument pointing control requirement rates, about z, y, 2 short term and z, y, 2z
long term, respectively, deg/sec; real (6) S )
FOV_INST: Instrument instantaneous field of view about z- and y-axes, respectively, deg;

real (2)
FOV_MAX: Instrument maximum scanning field of view about z- and y-axes, respectively, deg;

real (2)
FOV_PROT: Instrument field-of-view restriction to protect it from damaging radiation about z-
and y-axes, respectively, deg; real (2)

SPEC_CON:
INSTR_NO: See above.
TITLE: See above. - - — .
SP1: First row of special considerations; text
SP2: Second row of special considerations; text

SP10: Tenth row of special considerations; text

The information contained in the special considerations relation of SPEC_CON will vary greatly from
used, reasons for field-of-view restrictions, sensor duty-cycle time and constraints, calibration requirements and
frequency, ancillary information needs (data needs from the spacecraft or other instruments), complementary
instruments required with this instrument, location or mounting constraints, contj;\mination/environmental
constraints (radiation, magnetic, chemical, optical, etc.), flexible appendage constraints (allowable linear and
angular motions), and EMI in violation of MIL-STD-461C (source and receiver). (See ref. 4.) -

SPACECFT: " |
SCNAME: Name of spacecraft concept analysis model; text

INSTR_NO: Instrument identification number; integer

LOCATE: z, y, z location of instrument origin from the spacecraft origin, m; real (3)

ORIENT: z, y, z rotation angles needed to align the instrument correctly on the spacecraft configuration,

deg; real (3)

Although this last relation of information will not be provided by the instrument specialist, it is used in the
computer-aided design environment of the SAB as the mechanism by which specific instruments are related to
specific spacecraft designs for follow-on engineering studies.

LU L TR TR T TR T R T TR T

fItrn I



Data Base Application

The instrument data base just described has been
created to support and expedite spacecraft design
studies being conducted within the Spacecraft Analy-
sis Branch at LaRC and provides both management
of the data and certain analysis advantages. The
baseline data base is protected from unauthorized
modifications by read-only permission, but any user
may make personal copies to modify any or all of
the data to create an instrument set reflective of his
study requirements. A typical user scenario would
see an engineer create and access a copy of the data
base, select the instruments of interest, query or alter
the attributes of interest, and print the data needed
for his study. This hardcopy would serve as his input
data listing. In fact, for studies requiring frequent
use of computer codes that use the data base infor-
mation as input, subroutines can be automatically
generated to read from (or write to) the data base di-
rectly. This allows rapid execution of analysis codes
and avoids the human interaction and potential error
associated with manual input of data. This section
will provide an example of the integration of an anal-
ysis program to the data base and briefly discuss the
tools themselves. -

Program Integration

The instrument data base has been implemented
on the same computer that hosts SAB’s major CADE
tools so that information can be drawn easily from
the data base as needed by various analyses. To
provide an example of such data base/analysis in-
tegration, a program that optimizes the placement
of instruments on a platform (ref. 5) will be cited.
This program alters the platform inertias by moving
the instrument masses within the configuration con-
straints and, by optimizing mass placement, can esti-
mate the potential savings achieved in the amount of
platform control propellant expended over a mission
lifetime. The optimization program reads the instru-
ment names, dimensions, masses, centers of gravity
(c.g.), and locations from the data base. These data,
along with a platform layout description that is input
by the analyst, are used by the optimization program
to assess possible alternative payload arrangements
for improving platform performance. Thus, as in-
dividual instrument characteristics evolve or as new
groupings of instruments are proposed, the mass op-
timization program can be quickly reinitialized be-
cause of its direct link to the data base. Analysis

results can be placed back into suitably defined lo-
cations in the data base for use by other programs.
This method of data access reduces the chance for hu-
man error and improves traceability between analysis
results and instrument definition. (In a similar fash-
ion, a large group of programs has been integrated
to provide an entire spacecraft conceptual design ca-
pability (ref. 6) implemented around a central data
base for information exchange.)

Data Base Management System

The integration of the optimization program with
the data base was facilitated by LaRC-developed
software utilities that support several necessary func-
tions. First, tools to actually create the data base
are needed. Second, tools that automatically gener-
ate code to read from or write to the data base are
needed. Third, a standard editor for data review and
modification is needed. The instrument data base
application described in the last section was con-
structed using a set of utilities developed at LaRC
specifically for program integration. These tools,
known as the Environment for Application Soft-
ware Integration and Execution (EASIE) (refs. 7-11)
provide an upper-level command language for con-
structing data base schema, interfacing stand-alone
programs; and developing menus and execution pro-
cedurcs. EASIE also provides a generic editor that
can be used to review and/or modify data in any
of the relations, regardless of their construction.
These tools, written in FORTRAN-77, currently sup-
port two data base management systems (DBMS’s),
but the specific version used in this application is
based upon the Relational Information Management
(RIM!) version 7 (ref. 12) from Boeing Computer
Services. EASIE itself, and thus the instrument data
base, have been implemented on a VAX? 11/785 un-
der the VMS? 5.0 operating system; however, EASIE
provides a portability to other operating systems and
other DBMS’s. Currently, a version of EASIE is be-
ing implemented in the UNIX operating system so
that today’s workstation environment can be sup-
ported. In this way, the integrated engineering en-
vironment can be ported, thus retaining the com-
mands familiar to the user and, therefore, reducing
the start-up time normally associated with learning
a new operating system or DBMS.

! RIM: Trademark of Boeing Computer Services.
2 VAX: Trademark of the Digital Equipment Corporation.
8 VMS: Trademark of the Digital Equipment Corporation.



Concluding Remarks

The primary motivation for the development of
this instrument data base was for management of
evolving instrument definitions needed during space-
craft conceptual design. The approach provides an
architecture that allows versions of instrument de-
scriptions to be dated and then used in spacecraft
analysis as the project team dictates. Any user of the
computer data base can make his own uncontrolled
copy and modify it to test the impact of instrument
requirement changes in his specific engineering area.
In this manner, the instrument data base will allow
traceability between analysis results and the specific

instruments used in that study. The data base ap-
proach also has been found to yield significant anal-
ysis execution efficiencies by providing a basis for
communications between the instrument data base
and other analysis programs. Using integration utili-
ties developed at NASA, a payload mass optimization
program has been integrated with the data base to
enhance iterative studies assessing the potential im-
pact of changes in the location of instruments on the

spacecraft.

NASA Langley Research Center
Hampton, VA 23665-5225
August 10, 1990
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Appendix
Example of Data Base Values

This appendix presents values contained in the data base for each of the eight tables that are
descriptive of instrument properties. The ninth table (relation SPACECFT) is not included since it
pertains to specific spacecraft models being studied by the Langley Spacecraft Analysis Branch and
is not of general interest.

The initial set of values presented here were drawn from early instrument definition studies
conducted by the Lockheed Missiles and Space Company, Inc., for the NASA Marshall Space Flight
Center (MSFC).

Although many of the data values in this appendix are zero, ongoing instrument definition
activities at MSFC are providing updated values as well as additional candidate instruments for
science applications at geostationary orbit. Information regarding the Marshall effort can be obtained
via electronic mail (NASAmail). Contact Dr. Vernon Keller, NASA Marshall Space Flight Center,
Mail Stop PS-02, Huntsville, AL 35812 (phone (205) 544-2470).



INSTR_NO TITLE

1 CGEOSTATIONARY MILLIMETER IMAGER/SOUNDER
(GEMIS)

2 MODERATE RES. IMAGING SPECTROMETER (MORIS)

3 INFRARED VERTICAL SOUNDER (IRVS)

4 MICHELSON SOUNDER (MIS) ——

5 FABRY-PEROT SOUNDER
6 LIGHTNING MAPPER (LIM)

7 OZONE MAPPER (0ZM)

8 ACTIVE CAVITY RADIOMETER (ACR)
9

: EARTH RADIATION RADIOMETER (ERRB)
10 SOLAR DISK SEXTANT-
11 X-RAY IMAGER (XRI) _
12 HIGH RES. IMAGING SPECTROMETER (HIRIS)
13 LASER RANGER (LRS)
14 COHERENT RADAR
15 SOLAR SPECTROMETER (SOS) -
16 LOW-FREQUENCY MICROWAVE RADIOMETER (LFMR)
17 SPACE ENVIRONMENT MONITOR (SEM)
18 DATA COLLECTION PLATFORM (DCP)
INSTR_NO  UPDATE CONTACT i
1 MAY 1989 TOM FRASCHETTI, JPL, M/S 168-327
2 JUNE 20,1989  RON KOCZOR, MSFC/ES41, MSFC, AL, 35812
3 NOV. 1988 P. MENZEL - NESDIS
4 NOV. 1988
5 JUNE 1988
6 NOV. 1988 P. KRIDER - U. OF AZ
7 NOV. 1988 -
8 NOV. 1988 D. WILLSON - JPL
9 NOV. 1088 E. HARRISON - LaRC
10 JUNE 1988
11 NOV. 1988 :
12 SEPT. 1989 J. M. VOSS, JPL, M/S 11-116
13 NOV. 1988 P. BINDER - NBS )
14 JUNE 1988 C. SWIFT - U. OF MASS -
15 NOV. 1988 D. WILLSON - JPL
16 NOV. 1988 R. SPENCER - MSFC ;
17 NOV. 1988 :

18 NOV. 1988



INSTR_NO

M_OBJ

1

2

10
11

12

13

14
15

16

17

18

MEASUREMENTS OF PRECIPITATION, WATER VAPOR,
TEMP. PROFILES, & STORM STRUCTURES

PROVIDE MOD. SPATIAL RES. (.5 TO 2 KM) IMAGERY TO
MONITOR ATMOS., LAND, OCEAN

SHORT-TERM DETERMINATION OF TEMPORAL,
HORIZONTAL, VERTICAL STRUCTURE OF ATMOS.
HIGH-RES. TRACE GAS DETECTION AND
TEMP./HUMIDITY PROFILE DETERMINATION
HIGH-RESOLUTION TEMPERATURE AND HUMIDITY
SOUNDING

MONITOR LIGHTNING EVENTS; PROVIDE SEVERE
STORM DETECTION, ASSESS., AND TRACKING
DETERMINE TOTAL OZONE; VERTICAL DISTRIB. OF
TEMP., OZONE, TRACE GASES

CONTINUOUS PRECISION MEASUREMENT OF SOLAR
ENERGY OUTPUT

ACCURATE MEASUREMENTS OF EARTH’S RADIATION
BUDGET

SOLAR DIAMETER

MONITOR SOLAR FLARE EVENTS AND ASSOC. IMPACTS
ON NEAR-EARTH ENVIRONMENT

STUDIES ON TIME-VARYING SPECTRA FOR
GEOLOGICAL, VEGETATION, AND HYDROLOGICAL
ANALYSES

MONITOR FAULT DEVELOPMENT AND TECTONIC
PROCESSES, PROVIDE EARTHQUAKE WARNINGS
MEASURES OCEAN CURRENTS ON A DAILY BASIS
CONTINUOUS SOLAR SPECTRAL RADIANCE
MONITORING

PRECIPITATION, SURFACE TEMP., AND OCEAN WIND
MEASUREMENTS

CONTINUOUS MONITORING OF THE SPACE
ENVIRONMENT

COLLECT ENVIRO. DATA, RELAY TO GROUND STATION,
PROVIDE LOCATION/MOVEMENT DATA

11



12

INSTR_NO DESCRIPT

O

10
11
12
13
14

15

16

17

4.4 M SOLID DISH, 15 KM RES. AT 32-220 GHZ, FULL
DISK - 30 MIN, REGIONAL - 15 MIN

TWO-AXIS SCANNING RADIOMETER W/TELESCOPE
FORE-OPTIC AND SPECTRAL AFT-OPTIC

SPATIAL RES=5-10 KM, VERTICAL RES.=.2-1 KM, TEMP.
RES.=1.0 DEG., FULL DISK - 60 MIN

TEMP. RES.=1 DEG., SPATIAL RES.=5-10 KM, VERT.
RES.=1 KM, 2 COVERAGE MODES

MULTICHANNEL NEAR INFRARED IMAGING, SAMPLING
1000 TIMES/SEC, SPATIAL RES.=5-10 KM -

2 SEP. INSTRUMENTS: NADIR SOUNDER (GNS) AND LIMB
SOUNDER (GLS)

SUN POINTING, FAIL SAFE SHUTTERS

2 MEASUREMENT SYSTEMS: SCANNING (3 TELESCOPES) &
NONSCANNING (2 EARTH DETECTORS)

1 M OPTICAL TELESCOPE, SPATIAL RES.=100 M, APPROX. 100
CHANNELS (.3-12 MICRONS)

SENSES EARTH DEFORMATION USES GROUND REFLECTORS
(400-500 RETROS DEPLOYED) '

10 GHZ, 400 WATTS EVERY 3 HRS., 30 KM:RES 5 CM/SEC

18

ACCURACY - .
SUN POINTING, COMPLEMENTS ACR -

15 M ANTENNA, SPATTAL RES.=10 KM (5 50 GHZ), FULL DISK - 30
MIN

5 SENSORS: MEPED, TED, LEFI, TAM, RAB.

AVG CAPACITY 720 DCPS SINGLE SCAN 1 2 KM

INSTR_NO DEV_STAT SKETCH  REFER

1 3 GEO. PLAT.  NASAMAIL ON GEOPLAT
STUDY FINAL (G.S. WILSON), AUG. 1989
REPORT, p93

2 3 GEO. PLAT. = NASAMAIL UPDATE POSTED
STUDY FINAL JULY 12, 1989 (DUPTON)
REPORT, p95

3 5 GEO. PLAT.  GEOSTATIONARY PLATFORM STUDY
REPORT, p97 (LOCKHEED)

4 5 GEO. PLAT.  GEOSTATIONARY PLATFORM STUDY

STUDY FINAL FINAL REPORT, NOV. 1988
REPORT, p99 (LOCKHEED)



INSTR_NO DEV_STAT SKETCH

REFER

5

10

11

12

13

14

15

16

17

18

2

GEO. ES PLAT.
INSTRUMENT
AND PLAT.
CONCEPTS, p26

GEO. PLAT.
STUDY FINAL
REPORT, p101
GEO. PLAT.
STUDY FINAL
REPORT, p103
GEO. PLAT.
STUDY FINAL
REPORT, p105
GEO. PLAT.
STUDY FINAL
REPORT, p107
GEO. ES PLAT
INSTRUMENT
AND PLAT.,
CONCEPTS, p42
GEO. PLAT.
STUDY FINAL
REPORT, p109
GEO. PLAT.
STUDY FINAL
REPORT, pli1
GEO. PLAT.
STUDY FINAL
REPORT, p113
GEO. ES PLAT
INSTRUMENT
AND PLAT.

CONCEPTS, p57

GEO. PLAT.
STUDY FINAL
REPORT, pl15
GEO. PLAT.

STUDY FINAL
REPORT, pl17
GEO. PLAT.

STUDY FINAL
REPORT, p119
GEO. PLAT.

STUDY FINAL
REPORT, pl21

GEOSTATIONARY EARTH
SCIENCE PLATFORM INSTR

AND PLATFORM CONCEPTS,

JUNE 1988 (FORD AERO/

LOCKHEED)

GEOSTATIONARY PLATFORM

STUDY FINAL REPORT,

NOV. 1988 (LOCKHEED)
GEOSTATIONARY PLATFORM STUDY
FINAL REPORT; NOV. 1988
(LOCKHEED)

GEOSTATIONARY PLATFORM STUDY
FINAL REPORT, NOV. 1988
(LOCKHEED)

GEOSTATIONARY PLATFORM STUDY
FINAL REPORT, NOV. 1988
(LOCKHEED)

GEOSTATIONARY EARTH SCIENCE
PLATFORM INSTR. & PLAT.
CONCEPTS, JUNE 1988 (FORD
AEROSPACE/LOCKHEED)
GEOSTATIONARY PLATFORM STUDY
FINAL REPORT, NOV. 1988
(LOCKHEED)

GEOSTATIONARY PLATFORM STUDY
FINAL REPORT, NOV. 1988
(LOCKHEED)

GEOSTATIONARY PLATFORM STUDY
FINAL REPORT, NOV. 1988
(LOCKHEED)

GEOSTATIONARY EARTH SCIENCE
PLATFORM INSTRUMENT AND PLAT.
CONCEPTS, JUNE 1988 (FORD
AEROSPACE/LOCKHEED)
GEOSTATIONARY PLATFORM STUDY
FINAL REPORT, NOV. 1988
(LOCKHEED)

GEOSTATIONARY PLATFORM STUDY
FINAL REPORT, NOV. 1988
(LOCKHEED)

GEOSTATIONARY PLATFORM STUDY
FINAL REPORT, NOV. 1988
(LOCKHEED)

GEOSTATIONARY PLATFORM STUDY
FINAL REPORT, NOV. 1988
(LOCKHEED)

13
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INSTR_NO  LENGTH HEIGHT  WIDTH  VOLUME  MASS
1 44 6.6 4.4 30.4 250.
2 2.1 1.2 9 2.268 230.
3 1.4 6.88 95 1.22 146.
4 1.93 1.17 1.26 2.85 165.
5 2. 1. 9 1.8 800.
6 2 2 2 008 30.

7 1.67 1. 1. 1.67 30.
8 3 4 25 03 50.
9 9 45 7 284 50.
10 4 3 3 036 100.
11 73 44 47 15 19.
12 2.43 1.47 1.57 5.6 400.
13 1.5 1. 1.5 2.25 100.
14 1.8 4 1.2 864 200.
15 3 1. 25 075 60.
16 15. 5. 15. 78.5 200.
17 2. 2 2 08 38.
18 2 2 2 008 23.
INSTR_NO  LOCAL_CM INERTIA = - .
X Y Z XX YY 727 XY XZ Yz
1 0. o0 0 0 0. 0. 0. 0. 0.
2 0. 0 0 O 0. 0. 0. 0. 0.
3 0. 0 0 o0 o0 0. 0. 0. 0.
4 0. 0. 0 0 0 o 0. 0. 0.
5 0. 0 0 0 0. 0. 0. 0. 0.
6 0. 0 0 0 0. 0 0. 0. 0.
7 0. 0 0. 0 0. 0. 0. 0. 0.
8 0. o0 0 0 0. 0. 0. 0. 0.
9 0. 0 0 0 0. 0. 0. 0. 0.
10 0. 0 0 0 0. 0. 0. 0. 0.
11 0. 0 0 O 0. 0. 0. 0. 0.
12 0. 0 0 0 0. 0. 0. 0. 0.
13 0. 0 0 O 0. 0. 0. 0. 0.
14 . 0 0 0 0. 0. 0. 0. 0.
15 0. 0 0 0 0. 0. 0. 0. 0.
16 0. 0 0 0 0. 0. 0. 0. 0.
17 0. 0 0 O 0. 0. 0. 0. 0.
18 o 0 0 0 o0 0. 0. 0. 0.

ERTTRR

o



INSTR_NO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

INSTR_NO

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

CENTER

SRR R X XN
R R R R e R X T
O OO O OO0 COO |IN

RAD_ASMP

90 DEGREES IN COLD SPACE UNOBSTRUCTED FOV

15
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INSTR_NO DIS_NOM DIS_PEK DIS_STB
MIN MAX MIN MAX MIN MAX
1 0. 100. 0. 100. 0. 50.
2 0. 100. 0. 100. 0. 0.
3 0. 110. 0. 110. 0. 0.
4 0. 128. 0. 128. 0. 0.
5 0. 138. 0. 138. 0. 0.
6 0. 100. 0. 100. 0. 0.
7 0. 30. 0. 30. 0. 0.
8 0. 20. 0. 20. 0. 0.
9 0. 30. 0. 30. 0. 0.
10 0. 150. 0. 150. 0. 0.
11 0. 10. 0. 10. 0. 0.
12 0. 100. 0. 100. 0. 0.
13 0. 300. 0. 300. 0. 0.
14 0. 400. 0. 400. 0. 0.
15 0. 40. 0. 40. 0. 0.
16 0. 50. 0. 50. 0. 0.
17 0. 25. 0. 25. 0. 0.
18 0. 32. 0. 32. 0. 0.
INSTR_NO ETMP_NOM ETMP_PEK ETMP_STB
MIN MAX MIN MAX MIN MAX
1 10. 35. 10. 35. -10. 35.
2 —10. 40. —10. 40. 0. 0.
3 —10. 40. —10. 40. 0. 0.
4 —-10. 40. —10. 40. 0. 0.
5 —-10. 40. —10. 40. 0. 0.
6 —10. 40. —10. 40. 0. 0.
7 —-10. 40. —10. 40. 0. 0.
8 —10. 40. —10. 40. 0. 0.
9 —10. 40. -10. 40. 0. 0.
10 —10. 40. —10. 40. 0. 0.
11 —10. 40. —10. 40. 0. 0.
12 -10. 40. —10. 40. 0. 0.
13 -10. 40. —10. 40. 0. 0.
14 -10. 40. —10. 40. 0. 0.
15 —10. 40. —10. 40. 0. 0.
16 -10. 40. —10. 40. 0. 0.
17 -10. 40. —10. 40. 0. 0.
—10. 40. —10. 40. 0. 0.



INSTR_NO ATMP_NOM ATMP_PEK ATMP_STB
MIN MAX MIN MAX MIN MAX
1 —40. 40. —40. 40. —50. 80.
2 0. 0. 0. 0. 0. 0.
3 0. 0. 0. 0. 0. 0.
4 0. 0. 0. 0. 0. 0.
5 0. 0. 0. 0. 0. 0.
6 0. 0. 0. 0. 0. 0.
7 0. 0. 0. 0. 0. 0.
8 0. 0. 0. 0. 0. 0.
9 0. 0. 0. 0. 0. 0.
10 0. 0. 0. 0. 0. 0.
11 0. 0. 0. 0. 0. 0.
12 0. 0. 0. 0. 0. 0.
13 0. 0. 0. 0. 0. 0.
14 0. 0. 0. 0. 0. 0.
15 0. 0. 0. 0. 0. 0.
16 —10. 40. —10. 40. 0. 0.
17 0. 0. 0. 0. 0. 0.
18 0. 0. 0. 0. 0. 0.
INSTR_NO PWR_NOM PWR_PEK PWR_STB

1 300. 330. 50.

2 250. 250. 0.

3 110. 110. 0.

4 128. 128. 0.

5 138. 138. 0.

6 100. 100. 0.

7 30. 30. 0.

8 20. 20. 0.

9 30. 30. 0.

10 150. 150. 0.

11 10. 10. 0.

12 100. 100. 0.

13 300. 300. 0.

14 400. 400. 0.

15 40. 40. 0.

16 50. 50. 0.

17 25. 25. 0.

18 32. 32. 0.

17



REG
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INSTR_NO INP_VOLT VOLT_TYPE MIN MAX DUTY_CYC
1 28. DC 0. 0. 100.
2 28. DC 22. 38. 100.
3 0. 0. 0. 100.
4 0. 0. 0. 100.
5 0. 0. 0. 100.
6 0. 0. 0. 100.
7 0. 0. 0. 50.
8 0. 0. 0. 50.
9 28. DC 0. 0. 100.

10 0. 0. 0. 100.
11 0. 0. 0. 50.
12 0. 0. 0. 100.
13 0. 0. 0. 100.
14 0. 0. 0. 100.
15 0. 0. 0. 50.
16 0. 0. 0. 100.
17 0. 0. 0. 100.
18 0. 0. 0. 100.

INSTR_NO SDATA_R HDATA_R SDUTY_C HDUTY_C UREQ_RAT UREQ VOL

16.
117000.

COoOLCCLLELLDLRRPeR

4
1
0
0
0
0
0
0
0.
0.
0
0
0
0
0
0
0
0

copooooooo0000000R

o
<

100.

R R R Lo R R R L

e e R R R R o R R RN

S R R RN R

wwnmEmese o8|



INSTR_NO DREQ_NOM DREQ_PEK DREQ_STB
ANAL DGL ANAL DGL ANAL DGL
1 0. 0. 0. 0. 0 0.
2 0. 0. 0. 0. 0 0.
3 0. 0. 0. 0. 0 0.
4 0. 0. 0. 0. 0 0.
5 0. 0. 0. 0. 0 0.
6 0. 0. 0. 0. 0 0.
7 0. 0. 0. 0. 0 0.
8 0. 0. 0. 0. 0 0.
9 0. 0. 0. 0. 0 0.
10 0. 0. 0. 0. 0 0.
11 0. 0. 0. 0. 0 0.
12 0. 0. 0. 0. 0 0.
13 0. 0. 0. 0. 0 0.
14 0. 0. 0. 0. 0 0.
15 0. 0. 0. 0. 0 0.
16 0. 0. 0. 0. 0 0.
17 0. 0. 0. 0. 0 0.
18 0. 0. 0. 0. 0 0.
INSTR_NO MP1_COMP
1 MECHANICALLY SCANNED ANTENNA (+/— 10 DEG)
2 SCANNING MIRROR
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
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MP2_LACC MP2_AACC
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INSTR_NO FOV_INST FOV_MAX FOV_PROT
X Y Y
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INSTR_NO SP1
SP2

1 NADIR OVER FULL EARTH DISK (+/- 10 DEGREES)
RASTER SCAN OVER 4000 KM x 4000 KM AREA IN 30 MINUTES
2 NADIR TO OFF-LIMB FULL DISK COVERAGE EVERY 30 MINUTES
CALIBRATION - COLD SPACE WILL BE USED AS A ZERO REF. FOR
ALL CHANNELS
EARTH POINTING
EARTH POINTING
EARTH POINTING
EARTH POINTING
EARTH POINTING
SOLAR POINTING
EARTH POINTING
10 SOLAR POINTING
11 EARTH POINTING
12 EARTH POINTING
13 EARTH POINTING
14 EARTH POINTING
15 EARTH POINTING
16 EARTH POINTING
17 SOLAR POINTING
18 EARTH POINTING

O o0~ U W
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INSTR_NO SP3

SP4

CLEAR FIELDS OF VIEW
INTERNAL BLACKBODY TARGET TO CALIBRATE

W oo~ U & W=

INSTR_NO SP5

SP6

]

[He e BN B> RN, It U

10

12
13
14
15
16
17
18

HIGH DUTY CYCLE WITH NEAR-CONTINUOUS OPERATION
EAST/WEST SCAN PATTERN W/ORTHOGONAL STEP FOR RASTER
SCAN



INSTR_NO SP7

SP8
1
2 WITHSTAND THE NATURAL RADIATION ENVIRONMENT
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
INSTR_NO SP9
SP10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
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